A Unifying Market Power Measure for Deregulated Transmission-Constrained Electricity Markets

Subhonmesh Bose, Student Member, IEEE, Chenye Wu, Member, IEEE, Yunjian Xu, Member, IEEE, Adam Wierman, Member, IEEE, and Hamed Mohsenian-Rad, Senior Member, IEEE

Abstract—Market power assessment is a prime concern when designing a deregulated electricity market. In this paper, we propose a new functional market power measure, termed transmission constrained network flow (TCNF), that unifies three large classes of transmission constrained structural market power indices in the literature: residual supply based, network flow based, and minimal generation based. Furthermore, it is suitable for demand-response and renewable integration and hence more amenable to identifying market power in the future smart grid. The measure is defined abstractly, and allows incorporation of power flow equations in multiple ways; we investigate the current market operations using a DC approximation and further explore the possibility of including detailed AC power flow models through semidefinite relaxation, and interior-point algorithms from Matpower. Finally, we provide extensive simulations on IEEE benchmark systems and highlight the complex interaction of engineering constraints with market power assessment.

Index Terms—Market power, electricity markets.

I. INTRODUCTION

BEGINNING in 1990 with Chile, electricity markets in many regions have moved from being a vertically integrated regulated monopoly to a deregulated market structure that encourages innovation and competition in technology. The California energy crisis in 2000-01, however, highlights how strategic interaction can erode the benefits of competition in a deregulated market. It is estimated that about $5.55 billion was paid in excess of costs in the deregulated market in California between 1998 and 2001 alone [1]. To avoid such over-payments, monitoring and mitigating market power is essential. It is expected to become even more critical as new smart grid technologies such as intermittent renewable generation, energy storage, and demand-response programs start presenting more opportunities to exploit.

The Department of Justice defines market power as the ability of a firm to profitably alter prices away from competitive levels [2], [3]. In other words, market power is a form of market “dominance”, where a player can increase its profitability by behaving independently of competitors and consumers. Market power in generic markets has been extensively studied using microeconomics, e.g., in [4]. The theory, however, does not apply directly to electricity markets due to various reasons, such as: (a) Unlike in most commodity markets, electricity cannot be stored cheaply; therefore generators have significant short-run capacity constraints. (b) Electricity demand is typically inelastic because of limited priceresponsiveness of consumers. (c) Trade agreement between a supplier and a consumer is not enough to guarantee feasible power delivery over a transmission grid since power transfer respects physical laws as well as market outcomes. Economics or engineering alone cannot handle such issues adequately. In electricity markets, such dominance can be global, e.g., by a supplier with a large enough generation capacity, or local, e.g., by a supplier in a region which has limited ability to import less expensive electricity due to transmission constraints [5].

A. Literature on Market Power

Classically, the literature on market power is fractured. Recently, however, a principled design has begun to emerge, e.g., see [3] for a survey. The analysis of market power can be divided into three distinct categories: (a) structural analysis, (b) competition models, and (c) behavioral analysis.

Structural analysis of market power is based on an ex ante approach where the emphasis is on identifying firms that own “must-run” generators and hence have a strategic advantage in terms of market share, location in the network, etc. Such market power studies are also useful in the long-run to evaluate mergers, plan transmission capacity expansions, etc. Competition models analyze the electricity market either as a supply function or a Cournot competition with or without transmission constraints and establish competitive benchmarks for firm behavior using extensive simulations, e.g., see [6]–[9]. Real data is then compared ex post to such benchmarks to identify abuses of market power. In contrast, behavioral analysis is another ex post approach that detects actual supply withholding or high price-to-cost markups in the spot market as opposed to comparing it with perfectly competitive behavior. We make two observations. First, such ex post analysis indeed correlates with structural indices [10], [11]. Second, ex post analysis with real data can be highly challenging to identify intentional abuse of market power [12], [13]. Thus ex ante structural analysis helps to prevent rather than cure such abuse. In this paper, we focus on structural analysis.

Early work on structural market power analysis, emerging from microeconomics, suggested measures that focussed exclusively on market share based on generator capacities,
of the electric reliability council of Texas (ERCOT) uses a similar measure to the California ISO to assure price competitiveness [17]. The element competitiveness index (ECI) [18], the respective competitiveness index (RCI) in [16]. This index is used by the California ISO to assure price competitiveness [17]. The electric reliability council of Texas (ERCOT) uses a similar measure called the element competitiveness index (ECI) [18], based on HHI [14].

Issues arising due to transmission constraints have also been addressed in the literature. A traditional approach uses the SS-NIP (small but significant non-transitory increase in price) test [19] to identify geographically isolated “load pockets”. Many authors have studied Cournot-based or supply-function based markets with congestion, e.g., see [6]–[9], [20], [21]. Structural indices on a transmission constrained network, however, have remained fractured. We have attempted to bridge that gap in this work.

B. Contributions of this paper

In this work, we introduce a functional market power measure for structural analysis that unifies the theory to study the complex interactions of this measure with the engineering constraints. The new measure, termed “transmission constrained network flow” unifies three broad classes of structural measures in the literature: “network flow based” [23], [24], “residual supply based” [20], [25], and “minimal generation based” [26], [27]. We introduce each of these classes in detail in Section II. Calculating the new measure in Section III requires us to solve a nonconvex optimization program resulting from the nature of the AC power flow equations. Current electricity markets use a linearized DC approximation [28], [29]. Employing this approximation, we solve a linear program (LP) to compute the market power functional and study it in detail. We further explore the possibility of including a detailed AC power flow model in this economic measure in Section IV in two ways: (a) use interior-point based methods implemented in Matpower [30], (b) use recent advances in semidefinite programming (SDP) based relaxations [31] to AC power flow equations [32]–[35]. In Section V, we provide extensive simulations on IEEE benchmark systems [30] and illustrate the impact of modeling engineering constraints in identifying market power. We extend the index to the case where firms can own generators at multiple locations in Section VI.

1A preliminary version of this work has appeared in [22].

II. Market power measures

Recently, many indices have been introduced to include the effect of transmission constraints in structural market power indices; we categorize them as: “residual supply based”, “network flow based”, and “minimal generation based”. In what follows, we introduce each of them in detail.

A. Residual supply based measures

Residual supply based measures propose to quantify the maximum total load that the transmission-constrained electricity market can meet if generator of interest, s, is excluded. Following [20], [25], the transmission-constrained residual supply index (TCRSI) for generator s is defined as:

\[
\text{TCRSI}_s = \max_{q,t} t
\]

subject to

\[
1^t q = 1^t (\bar{d} t), \quad -b \leq H_q q - H_d (\bar{d} t) \leq b, \\
q_s = 0, \quad 0 \leq q_i \leq \bar{q}_i, i \neq s.
\]

where q is the supply vector, t is the demand scaling parameter, \(H_q\) is the generation shift factor matrix, \(H_d\) is load shift factor matrix, b is the transmission line capacity vector, \(\bar{q}_i\) is the capacity of generator i, \(\bar{d}_j\) is the demand of load j, 1 is a unit vector, and \(t^\dagger\) denotes transposition. If TCRSI_s < 1, then generator s can potentially exercise market power. Consider the network in Figure 1. For \(G_1\), TCRSI is 3.2/7, the fraction of demand that can be met with available supply.

![Fig. 1: A small network to illustrate market power indices. All quantities are measured in per units (p.u.). z denotes impedance and b denotes line capacity.](image)

B. Network flow based measures

Network flow based measures are exemplified by [23], [24], which model market power in the presence of transmission constraints in terms of the maximal network flow (MNF) achievable without the generator of interest. Conceptually, these measures are similar to TCRSI, but they do not use power flow equations to model the underlying power systems. A key result in [23], [24] is that market power is supermodular, i.e., there is always an incentive for generators to collude. This conclusion, however, does not hold if the power flow respects impedance and follows Kirchoff’s laws. See Section
VI for an example in IEEE test systems. Intuitively, one would expect that there is always an incentive to collude since any individual strategy for generators would likely be a valid strategy for a collusion of generators. Market power index measures the demand shortfall due to the absence of a generator. Consider the network in Figure 1. When \(G_1 \) withholds generation, \(G_2 \) can only supply 3.2\(pu \); demand shortfall is 3.8\(pu \). Similarly, when \(G_2 \) withholds generation, demand shortfall is 4.33\(pu \). When both generators withhold, shortfall is the total demand of 7\(pu \), which is lower than the sum of the two shortfalls computed before. Thus market power is not supermodular. Roughly, when power injection from two different generators lead to opposing power flows on a capacity-limited transmission line, then these two generators acting together may not be able to cause more demand shortfall than shortfalls due to each generator withholding alone. This intuition holds for the network in Figure 1.

C. Minimal generation based measures

The above two definitions of market power focus on the fraction of unmet demand when generator at bus \(s \) is not in service. An alternate approach is to calculate the minimum generation required from generator \(s \) to meet the total target demand. In particular, minimal generation based measures typically identify “must run generators”, e.g., [26], [27] are exemplified by the transmission-constrained minimal generator index (TCMGI):

\[
\text{TCMGI}_s = \min_{q} \quad q_s \\
\text{subject to} \quad 1^\dagger q = 1^\dagger \bar{d}, \\
\quad \quad \quad \quad -b \leq H_q q - H_{\bar{d}} \bar{d} \leq b, \\
\quad \quad \quad \quad 0 \leq q_i \leq \bar{q}_i.
\]

Note that in (1), we have \(q_s = 0 \) and the total load is scaled by a variable factor \(t \). In (2), however, the output of generator \(s \) is a variable and the total demand is a constant. If TCMGI\(_s \) \(> 0 \), then generator \(s \) can exercise market power. In general, TCMGI\(_s \) does not equal the unmet demand in the network when generator at bus \(s \) is not operational. For example, consider the network in Figure 1. It can be checked that TCMGI\(_1 \) = 4.2\(pu \) while the shortfall is actually 3.8\(pu \) when the same generator is not in service. TCNI\(_s \) and TCMGI\(_s \) are indeed related; we explore this below.

III. Functional measure of market power

Prior work on structural market power measures in Section II suggests that while a wide variety of measures exist, the literature lacks a unified theory that incorporates economic and engineering constraints. Here we propose a functional market power measure rather than a market power index that represents a step toward such a unifying measure.

To motivate the measure, consider the following informal definition:

\[
\text{TCNF}_s(\rho) = \max_{\text{total demand met}} \text{supply from generator } s \leq \rho, \text{ other network constraints.}
\]

The functional TCNF\(_s \) maps every scalar \(\rho \in [0, \bar{q}_s] \) into the maximum demand that can be satisfied when the (real) power output of generator \(s \) is no more than \(\rho \). TCNF\(_s(\rho) \) can also be interpreted as a measure of the minimum amount of load that has to be shed (or dispatched, through demand-side management\(^2\)), provided that the supply of generator \(s \) is up to \(\rho \). At different levels of \(\rho \), it measures the relative importance of each generator to meet additional demand, abiding by the network constraints.

The definition can also be interpreted as follows. Consider the optimal power flow (OPF) problem where the objective is to only satisfy demand and the production level of generator \(s \) is upper bounded by the parameter \(\rho \). Then, the optimal objective value of this OPF type problem is a function of that variable \(\rho \) and hence defines a “functional” measure of market power for generator \(s \).

In the rest of this section, we provide a detailed power flow model and its linearized approximation to arrive at a unifying market power measure that is applicable to the current electricity markets and can be used for the evolving smart grid. Next, we formally define TCNF\(_s(\rho) \) with the engineering constraints.

A. Definition

We begin with some notation. Let \(i = \sqrt{-1} \) and for any complex matrix or vector \(z \), let \(z^\text{H} \) be the complex conjugate transpose of \(z \). Consider a network on \(n \) nodes (buses) labeled 1, 2, ..., \(n \). Let \(p_k^G \) and \(q_k^G \) be the real and reactive power demands that are met at node \(k \). Also let \(p_k^D \) and \(q_k^D \) be the real and reactive power demands that are met at node \(k \). We denote \(s_{kj} := p_{kj} + i q_{kj} \) as the apparent power flowing from bus \(k \) to bus \(j \), where \(p_{kj} \) and \(q_{kj} \) are the real and reactive power flows, respectively. Thus, power balance equation at each node \(k \) becomes

\[
(p_k^G - p_k^D) + i(q_k^G - q_k^D) = \sum_{j, j \sim k} s_{kj},
\]

where \(j \sim k \) denotes that buses \(k \) and \(j \) are connected in the power network. The power generations are assumed to satisfy

\[
0 \leq p_k^G \leq \bar{p}_k^G, \quad -\beta_k p_k^G \leq q_k^G \leq \beta_k p_k^G,
\]

where \(\beta_k > 0 \) is a known constant that depends on the technology, i.e., each generator is assumed to vary its reactive power output within a certain power factor of the real power generation. The total load to be supported at bus \(k \) has a target real demand \(p_k^D \) and a target power factor \(\alpha_k \). The target power factor depends on the type of load at bus \(k \). Thus, the supported demand \(p_k^D + i q_k^D \) satisfies

\[
0 \leq p_k^D \leq \bar{p}_k^D, \quad q_k^D = \tan(\cos^{-1} \alpha_k) p_k^D.
\]

Power factors typically range from 0.95 to 0.98 lagging. The apparent power flowing from bus \(k \) to bus \(j \) is \(s_{kj} \) and is

\(^2\)When there is a deficit in electricity supply, the system operator may call upon consumers to adjust their demand so as to match the supply — an approach which is usually referred to as demand response.
bounded by the thermal and stability limits of the transmission lines as
\[|s_{kj}| \leq f_{kj}, \]
where \(f_{kj} \) is the known capacity of the line between buses \(k \) and \(j \). Let the voltage at bus \(k \) be \(V_k \), and the admittance of the line between buses \(k \) and \(j \) be \(y_{kj} \). The current flowing from bus \(k \) to bus \(j \) is \(y_{kj}(V_k - V_j) \) and we have
\[s_{kj} = V_k [y_{kj}(V_k - V_j)]^H. \]

To maintain power quality and the system stability, the voltage magnitude \(|V_k| \) at bus \(k \) is required to be bounded as follows:
\[W_k \leq |V_k|^2 \leq \overline{W}_k, \]
where \(W_k \) and \(\overline{W}_k \) are known constants.

Using the notations introduced above, we are now ready to formally introduce a measure the market power of a generator at node \(s \) as follows:
\[\text{TCNF}_s(\rho) = \text{maximize } \sum_k p_k^D \]
subject to \(p_s^G \leq \rho, \)
\[(3), (4), (5), (6), (7), (8), \]
over \(p_k^G, q_k^G, p_k^D, q_k^D, k = 1, \ldots, n, \)
\[s_{kj}, \ k \sim j. \]

We refer to this measure as the \textit{transmission-constrained network flow}. The constraints in (3)-(8) model the impact of the network topology, the underlying circuits, and the transmission line capacities. These constraints make our analysis different from a traditional economic approach to market power. Note that, \(\text{TCNF}_s(\rho) \) is a \textit{functional} measure, i.e., it evaluates market power for every given value of parameter \(\rho \).

In Section III-C, we describe how the measure in (9) unifies the three general classes of structural market power measures discussed in Section II. The formulation of the TCNF measure in (9) is general. Depending on how the non-convexity in the power flow equations is tackled, different variations of the TCNF measure can be derived. We focus on the most practical version, which is based on the linear DC approximation, since current electricity markets widely employ this to model the underlying power system. In the rest of this section, we describe this approximation and analyze the resulting TCNF measure in detail. To highlight the generality of the TCNF framework, we also discuss other variations of the measure in Section IV.

B. The DC approximation

Currently, most electricity markets use a linearized DC approximation of the power flow equations. Therefore, the immediate application of our proposed functional market power measure is realized when it is customized based on DC approximation, using the following common assumptions [28], [29]:
- Transmission lines are assumed to be loss-less, i.e., \(y_{kj} = \mathbf{i} \theta_{kj} \) is purely imaginary for all pairs \(k \sim j \).
- For any pair of buses \(k \sim j \), the voltage phase angle differences \(\theta_k - \theta_j \) are assumed to be small, i.e., \(\sin(\theta_k - \theta_j) \approx \theta_k - \theta_j \) and \(\cos(\theta_k - \theta_j) \approx 1 \).

Using this approximation, for any pair \(k \sim j \), we have
\[s_{kj} = p_{kj} = b_{kj}(\theta_k - \theta_j). \]

It can be checked that there is no reactive power flow in this model; thus, ignoring the reactive power demand constraint in (5), this definition of TCNF coincides with the one studied in [22] and can be solved as an LP. Henceforth, we refer to this computation as the DC case, denoted by TCNF

C. Properties of TCNF

Earlier, we introduced the functional measure TCNF \((\rho) \) and its DC approximated version TCNF \(^{DC}(\rho) \) to assess market power. Now, we explore its salient features. TCNF \(^{DC}(\rho) \) generalizes network flow based and residual supply based measures. When \(\rho = 0 \), it indicates the maximal network flow satisfying the DC power flow constraints when generator \(s \) withholds generation.

To relate TCNF \(s \) to the minimum generation based measure, consider the \textit{transmission-constrained minimal generation} TCMG \(s(D) \) for generator \(s \) to be defined as follows:
\[\text{TCMG}_s(D) = \text{minimize } p_s^G, \]
subject to \(\sum_k p_k^D = D, \)
\[(3), (4), (5), (6), (7), (8), \]
over \(p_k^G, q_k^G, p_k^D, q_k^D, k = 1, \ldots, n, \)
\[s_{kj}, \ k \sim j. \]

This generalizes the minimum generation based measures in [23], [24] to a functional form. It is easy to extend the definition of TCMG \(s(D) \) to its DC approximated version TCMG \(^{DC}(D) \). In the next result, we explore the relationship of the functions TCNF \(^{DC}(\cdot) \) and TCMG \(^{DC}(\cdot) \); proof is included in the appendix.

Theorem 1. For each generator \(s \), TCNF \(^{DC}(\cdot) \) is a continuous, concave, piecewise linear and non-decreasing function; TCMG \(^{DC}(\cdot) \) is a continuous, convex, piecewise linear and non-decreasing function. Moreover, TCNF \(^{DC}(\cdot) \) and TCMG \(^{DC}(\cdot) \) are inverses of each other, i.e., for any \(0 \leq D \leq \text{TCNF}_s^{DC}(\infty) \),
\[\text{TCNF}_s^{DC}[\text{TCMG}_s^{DC}(D)] = D. \]

The inverse relationship between TCNF \(^{DC}(\cdot) \) and TCMG \(^{DC}(\cdot) \) holds for all \(0 \leq D \leq \text{TCNF}_s^{DC}(\infty) \). Here, TCNF \(_s^{DC}(\infty) \) is the total demand in the network that can be met when the power generated by generator \(s \) is not constrained (it, however, satisfies the generation capacity constraint \(0 \leq p_s^G \leq \overline{p}_s^G \) in (4)). Beyond that, the network cannot satisfy the target demand and hence TCMG \(_s^{DC}(D) \) only exists for \(0 \leq D \leq \text{TCNF}_s^{DC}(\infty) \).

Next, we illustrate the result of Theorem 1 through an example. Consider the network shown in Figure 1. TCNF \(_s^{DC}(\cdot) \)
is plotted for generators at buses 1 and 2 in Figure 2. Functions TCNF_1^{DC}(\cdot) and TCNF_2^{DC}(\cdot) are continuous, convex, piecewise linear and non-decreasing. As noted earlier, TCNF_s^{DC}(0) equals the TCRSI for generator s. Also, TCMGI for generator s is given by min\{\rho \geq 0 \mid TCNF_s(\rho) = TCNF_s(\infty)\}. TCRSI and TCMGI for each generator are indicated in the figure.

Lower the value of TCNF_s^{DC}(\cdot), higher the market power of generator s. Thus, we plot min_s TCNF^{DC}_s by considering the lower envelope of TCNF_1^{DC}(\cdot) and TCNF_2^{DC}(\cdot) to indicate the market power of the dominant generator for each \rho \geq 0.

In this example, the generator with maximum market power changes with \rho. This suggests that market power assessment is complex and cannot be sufficiently captured through a single index.

D. Calculating TCNF^{DC}_s

Computing the DC approximated market power functional requires solving a linear program that is fast and scalable with the size of the network. From Theorem 1, we know that TCNF_s^{DC}(\cdot) is continuous and piecewise linear. Then we can characterize the slopes of the linear segments of TCNF_s^{DC}(\cdot) using Lagrangian duality [31]; furthermore, we can use these slopes to provide an efficient way to compute the function. Specifically, for generator s, let \mu be the Lagrange multiplier for the constraint \rho_s^L \leq \rho. For any function f(z) in variable z, define \left(\frac{df(z)}{dz}\right)^+ as its right-hand derivative. We can relate the slopes of the linear segments of the functions TCNF_s^{DC}(\rho) as follows:

\left(\frac{d}{d\rho} TCNF_s^{DC}(\rho)\right)^+ = \mu_s, \quad (10)

where \mu_s is the Lagrange multiplier at the optimum. Recall that TCNF_s(\rho) is piecewise linear and is non-differentiable at the end-points of each line segment, but the right-hand derivative in (10) is well-defined. Using (10), a recursive algorithm can be developed to compute TCNF_s^{DC}(\rho) for \rho in any interval [a, b]; see [22] for details.

IV. AC POWER FLOW AND MARKET POWER

While DC approximation approach results in a variation of the TCNF measure that best fits the current practice in existing electricity markets, in this section, we explore the possibility of including a detailed AC power flow model in market power assessment.

To motivate this generalization, notice that structural indices identify pivotal suppliers, i.e., generators that are crucial to meet demand subject to engineering constraints. These constraints, however, are not limited to transmission capacities of the network only and includes limits on voltage magnitudes and reactive powers. Thus, though our focus is on TCNF^{DC}_s, it is interesting to explore the impact of the underlying engineering model on the economics of electricity markets. The analysis in this section also serves to highlight that our market power functional easily generalizes with different models of power flow equations.

As noted in Section III, the calculation of TCNF_s involves the solution of a nonconvex optimization problem in (9). The role of nonconvexity of power-flow equations have played a significant role in the literature on power networks [36]. Traditionally, the engineering problems and market computations have differed in the approaches taken to deal with this nonconvexity. While market outcomes have relied on the DC approximation [15], [16], [18], [22], [23], [25], engineering problems such as real-time economic dispatch have applied heuristics or iterative techniques to reach an implementable operating point [30], [37]. The conic relaxation approach, however, is a recent development and is finding applications in both the engineering and market considerations, e.g., see [32], [33], [35] for its use in optimal power flow and see [38], [39] for its use in electricity markets. In what follows, we present these two computational approaches to assess market power with AC power flow equations: (1) using heuristic iterative nonconvex optimization techniques in Section IV-A, (2) relaxing the non-convex quadratic equality constraint to a convex semidefinite constraint and use conic program solvers in Section IV-B. Our goal in this section is to explicitly characterize the effect of engineering models of the power system to electricity market considerations.

A. Non-linear optimization technique

Many iterative techniques have been used to solve optimization problems in power systems, specifically the optimal power flow problem; see [36], [37] for surveys. Some notable examples are quadratic programming, variations of gradient methods, Newton-based techniques, sequential quadratic programming, and interior-point based methods.

In this work, we use the primal-dual interior-point solver in Matpower [30]. When this converges, we refer to it as TCNF_s^{NL} and call this computation as the NL case. Though it is hard to comment on the optimality of the point obtained through this heuristic, the use of Matpower solver provides insights as we explore the simulations on the IEEE benchmark systems. Interior-point methods were popularized by Karmarkar for LPs [40] and Nesterov et al. for SDPs [41]. For LPs and SDPs, it is known that interior point methods converge to a global optimal solution in polynomial time. For nonlinear nonconvex problems, they rather provide a heuristic approach to obtain a local optimal solution. Matpower has
been known to perform well for economic dispatch problems over various IEEE test systems. As we would show in Section V, the NL case often shows similarity to the DC and the AC cases and provides a yard stick to measure the performance of our proposed DC approximation and the AC relaxation approaches. However, we reiterate that computing TCNF in (9) is NP-hard and thus it is hard to comment on the optimality of the solution obtained using Matpower.

B. The SDP relaxation approach

Recently, a conic relaxation has been proposed to deal with the nonconvexity of power-flow equation in (7), e.g., see [32]–[35]. In particular, consider the $n \times n$ positive semidefinite matrix $W = VV^H$ that has rank one (denoted as $W \geq 0$, rank $W = 1$). For each pair of buses $k \sim j$, we express s_{kj} as a linear matrix relation in W as follows. Define an $n \times n$ matrix M^{kj}, where

$$[M^{kj}]_{kk} = g^H_{kj}, \quad [M^{kj}]_{jk} = -g^H_{kj},$$

and rest of the entries of M^{kj} are zero. In terms of M^{kj}, the equality in (7) can be written as

$$s_{kj} = \text{tr}(M^{kj}W).$$

Accordingly, the optimization problem to calculate TCNF becomes a rank-constrained SDP [31] in terms of matrix W. It still remains nonconvex due to the rank constraint. Next, we relax the rank constraint to obtain $\text{TCNF}_{s}^{AC}(\rho)$ and refer to this computation as the AC case.

When the relaxation is exact, it indeed provides a global optimal solution as opposed to the heuristic NL case. The sufficient conditions for exact relaxation, however, are specific to particular network topologies and constraint patterns [33], [34]. When line-flow constraints are active, the relaxation is often inexact, as in [42] and the optimization yields a non rank-1 optimal W_s. To better understand the accuracy of the relaxation, we explore the quantity $\eta := \lambda_2(W_s)/\lambda_1(W_s)$, where $\lambda_1(W_s), \lambda_2(W_s)$ are the first and second eigenvalues of the positive semidefinite matrix W_s, respectively. A lower value for this ratio indicates a smaller optimality gap and hence more accurate results. We report the statistics of the quantity η on IEEE benchmark systems in Section V. We remark that SDP relaxation is known to scale poorly with the size of the network. However, recent results in [35], [43] suggest that the sparsity of the power network can be suitably exploited to obtain fast and scalable conic relaxations.

C. Properties of TCNF$_s^{NL}$ and TCNF$_s^{AC}$

In Section III-C, we explored the property of the market power functional TCNF$_s^{DC}(\rho)$. Here, we present a result similar to that of Theorem 1. For the minimum generation based measure, consider the versions of TCMG$_s$ computed using non-linear heuristic techniques of Section IV-A as TCMG$_s^{NL}$ and through the SDP relaxation of Section IV-B as TCMG$_s^{AC}$. First, we relate TCNF$_s^{AC}$ and TCMG$_s^{AC}$ as follows.

Theorem 2. For each generator s, TCNF$_s^{AC}(\cdot)$ is a continuous, concave, and non-decreasing function; TCMG$_s^{AC}(\cdot)$ is a continuous, convex, and non-decreasing function. Moreover, TCNF$_s^{AC}(\cdot)$ and TCMG$_s^{AC}(\cdot)$ are inverses of each other, i.e., for any $0 \leq D \leq \text{TCNF}_{s}^{AC}(\infty)$,

$$\text{TCNF}_{s}^{AC}(\text{TCMG}_{s}^{AC}(D)) = D.$$
For the DC case at $t = 1.9$, consider the total demand level (y-axis) of $3.2pu$, which is lower than the total target demand level. At this demand level, TCNFDC has a larger slope than TCNFNL. Therefore, to satisfy an extra unit of demand at $3.2pu$, generator 1 has to supply less additional power and hence more valuable to the system operator. This means that generator 1 has more market power in an incremental market.

Notice, however, that there is a remarkable difference between the AC and the DC cases, while the results from the NL case are similar to that of the AC model. Therefore, in this case study, the SDP relaxation finds a feasible and close to optimal solution of the non-convex optimization problem in (9). In Theorems 1 and 2, the TCNF functions for the DC and AC cases in Figure 3 are increasing and concave for all generators. This property does not generalize for the NL case. Note that, for generator 3, the optimization problem for calculating TCNFAC remains infeasible for $\rho \leq 0.35pu$. This indicates that generator 3 is needed to supply at least $0.35pu$ in order to maintain system stability. It is interesting to note that if the SDP relaxation is infeasible, so is the nonlinear optimization problem in (9) and hence the interior-point method does not converge to a feasible point for $\rho \leq 0.35pu$. We can also see that TCNFNL and TCNFAC are quite similar except for generators 1 and 2 at $\rho = 0$, where TCNFNL is greater than TCNFAC. For such a non-convex optimization problem, determining feasibility is NP-hard and hence it is hard to comment whether the problem in (9) is infeasible at $\rho = 0$. The SDP relaxation TCNFAC, however, is feasible. Moreover, it is continuous at $\rho = 0$ as expected from Theorem 2.

Another key observation is about the importance of each generator at various demand levels, in presence of dispatchable load. In this regard, we see that at the same demand level, TCNFDC in Figure 3(a) and TCNFAC in Figure 3(c) give conflicting conclusions, while TCNFNL in Figure 3(b) agrees with TCNFAC, indicating that the relaxation approach of AC power flow model is efficient in quantifying market power in the IEEE 6-bus system.

Finally, we conduct a numerical analysis to assess the sensitivity of our proposed market power measure to uncertainty in nodal reactive power values. Consider TCNF$^{AC}(\rho)$ in Figures 4(a) for generator 2 and in Figure 4(b) for generator 3, respectively. The plots have been generated with $t = 1.2$ and $t = 1.9$ and the load power factors have been varied from 0.95 to 0.99 lagging uniformly for all buses in each case. We can make two important observations. First, changing the power factor does have impact on market power analysis because the curves for TCNF$^{AC}(\rho)$ and TCNF$^{AC}(\rho)$ are different. Second, there is no crossing among the TCNF curves in this figure, which means, minor changes in the power factor, e.g., due to

Fig. 3: TCNF calculation based on different approaches for various generators in the IEEE 6-bus system.

Fig. 4: TCNF$^{AC}(\rho)$ for generators 2 and 3 plotted for load power factors from 0.95 to 0.99 lagging in the IEEE 6-bus system.
uncertainty in measuring nodal reactive power, do not change our conclusions with respect to identifying the generators with highest potential to gain market power. Therefore, while using an AC power flow model may help in better assessing market power due to its inherently more accurate representation of the underlying physical power system, it is not necessarily prone to higher errors due to uncertainty in both active and reactive power measurements. Of course, whether one would prefer to use TCNF$^{\text{DC}}(\rho)$ or TCNF$^{\text{AC}}(\rho)$ may depend on several factors, such as availability of computational power and existing market practices, which are beyond the scope of this paper.

B. IEEE 39-bus Test System

We now assess our proposed approach for market power analysis in a larger IEEE test system with 39 buses. At each bus s, the value of parameter ρ in function TCNF$_s(\rho)$ can be interpreted as the amount of curtailable load that is available for dispatch at bus s, in case of losing the generator at bus s. The higher the amount of dispatchable load at a bus, the better the grid operator can handle the loss of a generator at that bus, preventing such generator from gaining market power. However, the effectiveness of the same amount of dispatchable load in mitigating market power may not be the same at different buses. In other words, dispatchable load can be more (or less) valuable at certain locations. For example, consider the simulation results in Figure 5. Here, we are considering the TCNF, for generators at buses 31, 35 and 38. For the purpose of our analysis, we plot the lower envelope of TCNF$_s$ only, namely $\min_{s \in \{31,35,38\}}$ TCNF$_s(\cdot)$ for demand levels ranging from $t = 1.0$ to $t = 1.15$. For the case where $t = 1.15$, increasing the dispatchable load capacity is most beneficial when it is done at bus 38 because the generator at bus 38 has the highest potential to gain market power in this case. As another example, for the case where $t = 1.05$, if there is 1pu of dispatchable load capacity already in place in all generator buses, then increasing the dispatchable load capacity is most beneficial at bus 31, but if there is 3pu of dispatchable load capacity already in place in all generator buses, then increasing the dispatchable load capacity at bus 35 is most beneficial.

We can also make the following observations based on the results in Figure 5: (a) In the DC approximation case, depending on the value of ρ, different generators may gain the maximum market power. However, in the AC case, it is only generator 38 that always maintains the maximum market power for all values of ρ. (b) The DC and the NL cases are more similar to each other than the corresponding AC case. (c) For demand scaling of $t = 1.15$, the DC and NL cases indicate that the total demand that can be met is lower than the total target demand. In the AC case, however, the total target demand of about 71.1pu can be satisfied.

C. Summary of findings

We end our case studies by summarizing some of the highlights of our market power functional, as applied to IEEE benchmark systems. First, our proposed measure is suitable to incorporate the impact of demand-response in market power analysis. One option is to analyze demand response by looking at the results at a certain demand level, as we explained in Section V-A. Another option is to analyze demand response in form of quantifying the value of dispatchable loads at different buses, as we explained in Section V-B. Note that, since we study structural market power, our analysis does not involve pricing. Accordingly, it does not address price-elasticity in load demand. However, our case study in Section V-B provides an example on how we can utilize dispatchable loads as an elastic demand resource to mitigate market power.

Second, the results in our case studies can also be used to understand the role of renewable generation. For example, similar to the analysis in Section V-B, we can assess renewable generators by examining their impact on parameter ρ. Note that, at a bus where a traditional generator is co-located with a renewable generator, the value of ρ is calculated as the total power injection by both generators combined. Therefore, we can analyze how the variations in the output of renewable generator may aggravate or mitigate market power of a co-located traditional generator.

Finally, our proposed market power functional easily generalizes to allow consideration of different power flow models. Though our focus is on the DC model, our case studies also highlight that the AC power flow equations provide valuable insights into identifying reliability must-run generators that are otherwise not obvious from a DC model. Though uncertainties in reactive power loads can affect the TCNF curves of the generators, the variations tend to be much smaller as compared to the DC case. This suggests that faithfully representing the engineering model significantly affects market considerations.

We end this section with a remark on the accuracy of the SDP relaxations in the computation of TCNF$^{\text{AC}}$ for IEEE benchmark systems. Recall that the quantity $\eta := \lambda_2(W_{s*})/\lambda_1(W_{s*})$ is a measure of accuracy of the relaxation, where $\lambda_1(W_{s*}), \lambda_2(W_{s*})$ are the first and second eigenvalues of the optimal positive semidefinite matrix W_{s*}, respectively. A lower value corresponds to a smaller optimality gap. We tabulate η for our simulation runs on IEEE benchmark systems in Table I. We see that η is typically very small, but may not be negligible. The optimality gaps may not be accurate to find optimal operating points in economic dispatch, but as far as structural market power analysis is concerned, the results provide valuable insights to the market monitor on the complex interaction of power flow equations with market power assessment.

<table>
<thead>
<tr>
<th>Test Case</th>
<th># of Scenarios</th>
<th>Mean η</th>
<th>Max η</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-bus</td>
<td>834</td>
<td>0.0015</td>
<td>0.0044</td>
</tr>
<tr>
<td>9-bus</td>
<td>900</td>
<td>0.0034</td>
<td>0.0093</td>
</tr>
<tr>
<td>39-bus</td>
<td>900</td>
<td>0.0009</td>
<td>0.0171</td>
</tr>
</tbody>
</table>

TABLE I: Statistics of η for IEEE benchmark systems.

VI. FIRM BEHAVIOR

Our focus so far has been on identifying market power of a single generator. However, our analysis can easily be extended to the case where a single firm owns multiple generators at different locations. Let S denote the set of locations (buses) where the firm has a generator. The TCNF index of the
firm can be defined using the optimization problem (9) with a modified constraint that the total supply of the firm’s generators does not exceed ρ, i.e., $\sum_{s \in S} p^G_s \leq \rho$. Similarly, the TCMG index of a firm can be defined as the minimum total supply needed from the generators of this firm in order to meet a certain demand level D. This index can be calculated by modifying the objective function to $\sum_{s \in S} p^G_s$ in the definition of TCMG$_s$.

Note that, if an “adversarial” firm acts strategically to degrade the performance of the grid, then the behavior of each individual generator (of the firm) might be potentially different if it acted as a separate entity. A game theoretic analysis will be needed to measure the “worst-case” market power of an adversarial firm, which is an area left for future work.

We end this discussion with a note on supermodularity of market power. When market power is supermodular, it suggests that there is an incentive for generators to collude and form large firms. In fact, previous work in [23], [24] has suggested that there is always such an incentive. However, [23], [24] did not use power-flow equations in their study, and so we revisit this question here. Interestingly, it is indeed the case that, most of the time, market power is supermodular. This is not always the case though, e.g., for the IEEE 39-bus system, supermodularity does not hold for TCMF$_s^{DC}(0)$ for generators at nodes $s = 31$ and $s = 32$ when the line-flow limits are uniformly scaled down to 70% of their given values. Other examples can also be found. While it is often the case that firms have incentive to collude, this is not universally true.

VII. Concluding Remarks

In this paper, we propose a functional market power measure for structural analysis, called the transmission constrained network flow. This measure unifies three directions within market power research – residual supply based measures, network flow based measures, and minimal generation based measures. The measure is useful to study market power with demand response and renewable generation and hence suitable to the needs of the evolving smart grid. Furthermore, it generalizes to the case where firms own multiple generators across the network and can be extended to study possible mergers among generators. Motivated by current market practices, we focus our analysis on the market power functional with a linearized DC approximation of the power flow equations. However, to highlight the generalized market power framework, we also explore the possibility of incorporating the detailed AC power flow equations in our measure. Extensive simulations on IEEE benchmark systems suggest that conclusions can vary significantly depending on the power flow model considered. This points towards the growing need of faithfully representing the physics of the underlying power system in the design and analysis of electricity markets; engineering and economics in isolation is not enough to capture the complex interaction.

APPENDIX

Proof of Theorem 1

In computing TCNF$_s^{DC}$, the optimization is an LP lineally parameterized by ρ. Then it is well-known that the optimal objective function (in this case TCNF$_s^{DC}(\rho)$) is continuous and piecewise linear in the parameter ρ; e.g., see [46, Lemma 2]. Thus, TCNF$_s^{DC}(\rho)$ is a continuous and piecewise linear function of $\rho \geq 0$. For $0 \leq \rho_1 < \rho_2$, the feasible set for the optimization problem to compute TCNF$_s^{DC}(\rho_1)$ is a subset of that of TCNF$_s^{DC}(\rho_2)$ and thus TCNF$_s^{DC}(\rho)$ is non-decreasing in $\rho \geq 0$. Let the optimal points for problems TCNF$_s^{DC}(\rho_1)$ and TCNF$_s^{DC}(\rho_2)$ be x_1 and x_2, respectively. For any $0 \leq \gamma \leq 1$, the point $\gamma x_1 + (1-\gamma) x_2$ is a feasible point for the problem TCNF$_s^{DC}(\gamma \rho_1 + (1-\gamma) \rho_2)$. Then it follows that TCNF$_s^{DC}(\rho)$ is concave.

Next, we show that TCNF$_s^{DC}(\cdot)$ and TCMG$_s^{DC}(\cdot)$ are inverses of each other. For any $\rho \geq 0$, consider the optimal point for the optimization problem to compute TCNF$_s^{DC}(\rho)$. This optimum is feasible for the optimization problem TCMG$_s^{DC}[TCNF_s^{DC}(\rho)]$ and we have

$$TCMG_s^{DC}[TCNF_s^{DC}(\rho)] \leq \rho. \quad (11)$$

Similarly, it can be checked that for any $0 \leq D \leq TCNF_s^{DC}(\infty)$,

$$TCNF_s^{DC}[TCMG_s^{DC}(D)] \geq D. \quad (12)$$

For $\rho \in [0, TCNF_s^{DC}[TCNF_s^{DC}(\infty)]$, replacing $D = TCNF_s^{DC}(\rho)$ in (12), we obtain

$$TCNF_s^{DC}[TCMG_s^{DC}(TCNF_s^{DC}(\rho))] \geq TCNF_s^{DC}(\rho). \quad (13)$$

Fig. 5: The lower envelope of TCNF, i.e., $\min_s TCNF_s$ for selected generators in the IEEE 39-bus system.
Now, for $\rho \in [0, \infty)$, we have $\text{TCNF}_{s}^{(DC)}(\infty)$, we have $\text{TCMF}_{s}^{(DC)}(\rho)$ is concave and non-decreasing. Then it is easy to check that $\text{TCNF}_{s}^{(DC)}(\rho)$ is monotonically increasing in this interval and hence from (13), it follows that

$$\text{TCMF}_{s}^{(DC)}[\text{TCNF}_{s}^{(DC)}(\rho)] \geq \rho.$$

Combining the above relation with (11), we have

$$\text{TCMF}_{s}^{(DC)}[\text{TCNF}_{s}^{(DC)}(\rho)] = \rho. \quad (14)$$

The rest follows from the fact that for $0 \leq \rho \leq \text{TCMF}_{s}^{(DC)}[\text{TCNF}_{s}^{(DC)}(\infty)]$, the map $\text{TCNF}_{s}^{(DC)}(\rho)$ is monotonically increasing and hence one-one in this interval.

Acknowledgements

This work was supported in part by NSF through EPAS 1307794, ECCS 1307756, NetSE CNS 0911041, ARPA-E through GENI DE-AR0000226, Southern California Edison, the National Science Council of Taiwan through NSC 103-3113-P-008-001, the Los Alamos National Lab (DoE), and Caltech’s Resnick Institute.

We are grateful to Dr. Neil Fromer and Mr. Paul DeMartini from Resnick Institute at Caltech for their helpful comments. We also thank Prof. Antonio Conjejo (Editor in Chief) and the anonymous reviewers for their time and effort on our manuscript.

References

Subhonmesh Bose received his MS and PhD at California Institute of Technology, Pasadena, CA, USA in Electrical Engineering in 2012 and 2014, respectively working with Profs. Steven Low, Adam Wierman, K. Mani Chandy and Babak Hassibi in the Rigorous Systems Research Group. He is currently a postdoctoral scholar at Cornell University. Before joining Caltech, he was an undergraduate student at Indian Institute of Technology, Kanpur, India. His research interests are in modeling and analyzing problems in power system at the intersection of engineering and economics. He was best paper co-recipient at IEEE Power and Energy Society General Meeting, 2013 at Vancouver, BC, Canada.

Chenyen Wu (S’11, M’14) is a postdoctoral researcher at Carnegie Mellon University, Pittsburg, PA USA, working with Profs. Gabriela Hug and Soummya Kar. Before joining CMU, he received the doctoral degree in Computer Science from IIS, Tsinghua University, in July 2013, under the supervision of Prof. Andrew Yao. He was the best paper co-recipient of IEEE SmartGridComm 2012, and IEEE PES General Meeting 2013. Currently, he is working on the optimization, distributed control and game-theoretic analysis of power systems and electricity market.

Yunjian Xu received his PhD degree at the Massachusetts Institute of Technology in 2012, in the Laboratory for Information and Decision Systems (LIDS). Before joining the Singapore University of Technology and Design as an assistant professor, he worked as a postdoctoral scholar in the Center for the Mathematics of Information at California Institute of Technology for one year. His research interests lie in energy systems and markets, with emphasis on the economics of price-responsive demand and the dynamic scheduling of storage-capable loads. He is a recipient of the MIT-Shell Energy Fellowship.

Adam Wierman is a Professor in the Department of Computing and Mathematical Sciences at the California Institute of Technology, where he is a member of the Rigorous Systems Research Group (RSGR). He received his Ph.D., M.Sc. and B.Sc. in Computer Science from Carnegie Mellon University in 2007, 2004, and 2001, respectively. His research interests center around resource allocation and scheduling decisions in computer systems and services. More specifically, his work focuses both on developing analytic techniques in stochastic modeling, queueing theory, scheduling theory, and game theory, and applying these techniques to application domains such as energy-efficient computing, data centers, social networks, and electricity markets. He received the 2011 ACM SIGMETRICS Rising Star award for outstanding contributions to the computer/communication performance evaluation by a junior researcher, and has been co-recipient of best paper awards at ACM SIGMETRICS, IEEE INFOCOM, IEEE Power and Energy Society General Meeting, IFIP Performance, IEEE Green Computing Conference, and ACM GREENMETRICS. He was named a Siebel Scholar, received an Okawa Foundation grant, and received an NSF CAREER grant. Additionally, his dissertation received the CMU School of Computer Science Distinguished Dissertation Award. He has also received multiple teaching awards, including the Associated Students of the California Institute of Technology (ASCIT) Teaching Award. Wierman has more than 60 refereed publications and serves as an Associate Editor for the Operations Research journal and on the editorial board of the Performance Evaluation journal and the IEEE Transactions on Cloud Computing.

Hamed Mohsenian-Rad (S’04-M’09-SM’14) received a Ph.D. degree in Electrical and Computer Engineering from the University of British Columbia in Vancouver, Canada in 2008. Currently, he is an Assistant Professor of Electrical Engineering at the University of California at Riverside. Dr. Mohsenian-Rad is the recipient of the National Science Foundation (NSF) CAREER Award 2012, the Best Paper Award from the IEEE Power and Energy Society General Meeting 2013, and the Best Paper Award from the IEEE International Conference on Smart Grid Communications 2012. He serves as Editor for the IEEE Trans. on Smart Grid, the IEEE Communications Surveys and Tutorials, and the IEEE Communications Letters. His research interests are the design, optimization, and game-theoretic analysis of power systems and electricity market.